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ABSTRACT
Over the last two decades, Reinforcement Learning (RL) has emerged
the method of choice for data-driven dialog management. However,
one of the limitations of RL methods for the optimization of dialog
managers in the context of virtual conversational agents, is that
they require a large amount of data, which is often unavailable, par-
ticularly when the dialog deals with complex discourse phenomena.
User simulators help address this problem by generating synthetic
data to train RL agents in an online fashion. In this work, we ex-
tend user simulators to the case of socially-aware conversational
agents, that combine task and social functions. We propose a novel
architecture that takes into consideration the user’s conversational
goals and generates both task and social behaviour. Our proposed
architecture is general enough to be useful for training socially-
aware conversational agents in any domain. As a proof of concept,
we construct a user simulator for training a conversational recom-
mendation agent and provide evidence towards the effectiveness of
the approach.
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1 INTRODUCTION
In the last few years, people have become increasingly comfortable
interacting with conversational agents [35]. During these interac-
tions, people pursue multiple conversational goals, such as those
that fulfill (a) propositional functions: contributing informational
content to the conversation, and (b) interpersonal functions: manag-
ing relational goals such as building rapport [33]. While personal
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assistants such as Apple Siri, Amazon Echo, Microsoft Cortana
and Google Home focus on users’ propositional goals by getting a
specific task done, other conversational agents simply engage their
users in social chit-chat, trying to build a relationship with them.
In between the two, socially-aware conversational agents aim at
fulfilling both propositional and interpersonal goals, using rapport
or interpersonal closeness with a user to improve the effectiveness
of task dialog, and using task dialog to modify the social situation
[2, 4, 7]. Human-human studies have found that rapport between
two people can influence task performance in situations as diverse
as peer-tutoring [31] and negotiation [8]. Based on these findings,
it becomes important to endow today’s conversational agents with
the ability to build rapport with their users.

Rapport management is a rule-governed process. [32] shows
that politeness might build rapport early in a relationship but be
detrimental later on. [6] describes the ways in which appropriate
levels of self-disclosure (speaking about oneself) may strengthen a
relationship and, in turn, strong rapport can lead to more intimate
self-disclosure. Reciprocal appreciation supports rapport manage-
ment by making both interlocutors feel seen. Other strategies such
as praise and violation of social norms can also be linked to rapport
enhancement, depending on the timing and context of their usage.
A non-exhaustive list of conversational strategies and their in-
fluence on rapport can be found in [39]. As described, rapport is a
dyadic phenomenon, depending on the behavior of all conversation
participants, and it evolves over time. A socially-aware agent will
therefore have to detect the user’s rapport maintenance strategies,
and generate appropriate replies that adapt to the user’s current
move, conversational goal and the current level of rapport.

In modular conversational agent architectures, this reasoning
process is usually handled by a component called the Dialog Man-
ager (DM) which is in charge of selecting the best dialog policy to
follow given a particular context or dialog state [37]. For instance,
an agent should not recommend something to its users before ask-
ing about their preferences first, and everything should probably
be preceded by a greeting. Although it is quite easy to handcraft
such a simple policy (a mapping from state to actions), manually
authoring optimal policies for deep and complex dialogs becomes
quickly overwhelming [24]. For instance, there is no straightfor-
ward answer to whether all the users should share the same optimal
dialogue policy, or if different users should have different policies
depending on their conversational goals. Integrating rapport and
conversational strategies in the reasoning process makes author-
ing of dialog policies even more complex because of the real-time
adaptive nature of rapport maintenance conversational strategies
in task dialog.

Data-driven approaches can help address the aforementioned
limitations of hand-crafted authoring techniques, and hence, offer
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an attractive alternative to them [17]. However, the dynamic nature
of rapport maintenance in task dialog requires long-term planning
in order to incorporate the delayed consequences of actions in
stochastic environments. Reinforcement Learning (RL) provides a
framework to learn through delayed rewards and operates through
trial-and-error exploration to learn an optimal policy despite un-
availability of ground truth labels. This is the reason why RL is
especially attractive in the temporal and dynamic settings in which
socially-aware conversational agents operate [25]. Not only can an
RL-based agent learn how to optimize its task-performance, but
it can also learn the complex strategies that humans use to maxi-
mize rapport over time. However, RL-based approaches to dialog
management suffer from a major shortcoming: they require a large
amount of data for training in order to explore all the possible
dialog options (typically >> 104 dialogs) [28]. This is where user
simulators step in. A user simulator can generate a large amount of
synthetic dialog data on the basis of a relatively small initial corpus
which can then be used to train an RL-based DM.

In this paper, we propose a user simulator architecture that
closely approximates the behavior of a real social user. We argue
that in order to effectively train a socially-aware dialogue manager,
such a simulator should distinguish between the different conver-
sational goals of users. The simulated user should also estimate
rapport from sequences of conversational strategies (social cues)
taken as input and generate both task and social behavior in return
in the form of task and conversational strategies, respectively. The
rest of the paper is organized as follows: we discuss the related
work in section 2. Next, we describe the general architecture of our
social user simulator and its different components in section 3. Fur-
ther, we construct a data-driven user simulator using the proposed
architecture for a conversational recommendation agent, SARA
(Socially-Aware Robot Assistant) (section 4). Finally, we discuss our
results and their implications for the design of virtual agents in
section 5 and 6, respectively.

2 RELATEDWORK
Reinforcement Learning for dialog systems has been an active area
of research for almost two decades now [30]. Further, as reviewed
in [13], a variety of approaches for user simulation have been consid-
ered in literature to address the data inefficiency of RL approaches.
They can be categorized along two distinct dimensions. The first
dimension represents the granularity level at which user action
is generated. A user simulator can operate at the utterance level,
where the output is in natural language, or at the intention (or di-
alog act) level, in which case the user simulator only generates
higher level intentions. Although the utterance-level approach
helps to capture the immense variety of human language, it ex-
ponentially increases the number of states and actions the user
simulator (and by extension, the agent) would have to deal with.
For example, a single high level intention, say, requesting for a flight
destination, request(flight_dest), could be translated in many
different natural language utterances. Hence, the intention-level
approach appears more robust and scalable [14]. The second dimen-
sion represents the methodology used to build the user simulator.
In an agenda-based setting [28], the user intention at any given
turn depends upon the user goal (a set of constraints, C , in the

form of slot-value pairs and a set of request slots, R) and the user
agenda at the given turn. The agenda is a stack-like structure that
contains pending user intentions. In Dynamic Bayesian Network
(DBN) approach, the user’s decision-making is represented through
a probabilistic model trained from data [16]. In Inverse Reinforce-
ment Learning (IRL), data is used to directly reverse-engineer the
reward model of the user simulator [5]. However, we choose the
agenda-based approach because it less data-hungry.

There is rich literature on inference and incorporation of dif-
ferent user behaviours in user simulators [13]. In particular, a line
of work closely related to ours is that by [11], who learn different
dialog strategies for younger and older simulated users. [29] infer
the hidden agenda of users using an Expectation Maximization ap-
proach. However, in contrast to these approaches, we incorporate
users’ conversational goals in our user simulator, which represent a
more fundamental aspect of users’ conversational behaviour. Thus,
our work can be seen as a logical next step towards accurate simu-
lation of real (social) users’ behaviour.

Evaluating the performance and the quality of a user simulator
is essential before it can be used to train a dialog manager. If the
actions (either intentions or utterances) generated are not realistic
(e.g. if the simulator starts the interaction by a farewell, or if it asks
the same question many times in succession), the agent will not
be able to learn any reasonable dialogue policy. There are several
ways to evaluate a user simulator but there doesn’t seem to be
any consensus about the right metric to use [22]. These metrics
can broadly be divided into two categories: turn-level and dialog-
level. Turn-level metrics measure local consistency between the
generated synthetic data and data from real users. These include
KL distance (symmetric Kullback-Leibler divergence) to measure
dissimilarity of the two distributions (real vs generated). A lower
score implies a more realistic generated behaviour. Another turn-
level metric is the F1 score (incorporating precision and recall) for
the generated user actions. In contrast, dialog-level metrics evaluate
the overall quality of the generated dialogues. The Dialog-BLEU
score, for instance, measures the similarity between complete real
dialogs and the generated ones. Human subjective evaluation is
another way to evaluate the quality of the generated sequences of
actions. Next, we take a look at prior work on social user simulators.

In PsychSim [23], authors propose a decision-theoretic frame-
work to simulate interactions between multiple agents in a social
context. Although this framework allowsmanual definition of differ-
ent types of goals for each agent, it does not offer any learningmech-
anism, meaning that the dialog policy selected by the agent relies
heavily on handcrafted rules. Many recent works have attempted
to address this problem by building socially aware RL-based agents
[15] [12] [26]. However, all of these works circumvented the need
for a user simulator by oversimplifying the state and action spaces
to ensure that the RL agent learns effectively from limited data,
thereby reducing the usefulness of such agents. There also has
been some work on user simulators to train socially-aware dialog
systems. [9] derive a socially-inspired reward from positive and
negative appraisals inferred from a simulated user’s task strategies
and use it as a shaping reward function to train their RL agent. [38]
consider the problem of learning conversational systems that in-
terleave task and non-task (social) content to improve task success
rate and increase user engagement. They used a chatbot as a user
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simulator. However, none of these user simulators generate both
task and social behaviors explicitly, which, as explained previously,
are essential to enable rich modeling of the state space and are re-
quired as inputs by a socially-aware conversational agent. Further,
they do not incorporate the influence of the user’s conversational
goals on its behavior. To the best of our knowledge, our work is the
first attempt to propose an architecture for a social user simulator
that generates both task and social behaviors depending on a user’s
conversational goals.

3 USER SIMULATOR ARCHITECTURE
A schematic diagram of the proposed architecture for a social user
simulator is shown in figure 1. At any turn n ∈ {0, 1, ...,L} in the
dialog, where L denotes the maximum length of the dialog, the
input to the user simulator is comprised of the agent action At and
the output includes the state St and the reward Rt . In the context
of a user simulator for a socially-aware conversational agent, the
action At and state St are comprised of the following:
Task Strategies (TS): A task strategy is comprised of two dis-
tinct components: a string that succinctly captures the function
of the strategy, e.g.: inform, request, bye, confirm, etc. and a set
of slots/slot-value pairs, e.g.: feedback=good, primary-goal , etc.
that capture the information provided or requested. For example, a
task strategy for requesting feedback for a recommendation made
by the agent could be represented as request(feedback). If the
recommendation was relevant, the user response could be repre-
sented as the task strategy inform(feedback=good). We denote
agent and user task strategies by T a

n and Tun , respectively.
Conversational Strategies (CS): A conversational strategy is a
social strategy used by the agent or the user for building, maintain-
ing or destroying rapport. We denote agent and user conversational
strategies byCa

n andCun , respectively. In our work we focus on 6 and
8 different user and agent conversational strategies, respectively,
as described in tables 1 and 2.

Agent	Dialog	Manager

At

St+1

Rt+1St Rt

User	
Model

Rapport	Estimator

User	Dialog	
Manager

Reward	Model

AGENT

USER SIMULATOR

Figure 1: Social User Simulator Architecture

Next, we provide a brief description of all the major components
of the social user simulator architecture.

3.1 User Model
The User Model captures all the information relevant for modeling
the distinct types of users whose behaviour we wish to simulate

Speaker Conversational Strategies

User SD, PR, HE, VSN, QESD, NONE
SARA SD, PR, HE, VSN, QESD, ACK, ASN, NONE

Table 1: User and agent conversational strategies

through the social user simulator. This information will depend
upon the specific task and the goals of the user simulator and can be
obtained through analysis of human-human (or human-machine)
data such as Wizard of Oz (WoZ) corpus [10]. The user model can
influence both the aspects of user behaviour: task and social. In
terms of task, in a movie recommendation domain, for example, the
user model can take the form of a prior over the slot values the user
prefers (certain genres, actors, directors, etc.). In terms of social
behavior, the user model could capture aspects such as whether the
user prefers self disclosing information over praising for building
rapport. Finally, the user model can also decide whether the user
prefers longer interactions over shorter interactions. We describe
the user model for our case study in section 4.4.

Code Conversational Strategy Example

SD Self-disclosure This is my first time here.
PR Praise You are great, SARA.
HE Hedging (or Indirectness) That’s okay, I guess.
VSN Violation of Social Norm So how are things?
QESD Question to Elicit Self-Disclosure What are your goals?
ACK Acknowledgment uh huh
ASN Adherence of Social Norm May I ask your name?
NONE No Conversational Strategy I’m sure you’ll enjoy it.

Table 2: Conversational Strategy codes and examples

3.2 Rapport Estimator
This module estimates level of rapport (as experienced by the user)
at every turn in the interaction. Since we only focus on verbal be-
haviour in this work, this module is responsible for updating the
rapport value by taking into account the past history of agent and
user conversational strategies and task strategies. The rapport esti-
mated by the user simulator is taken into account by the user dialog
manager to decide the next appropriate task and social strategy.
For example, if the rapport value is below a certain threshold, the
likelihood of acceptance of a recommendation made by the agent
might become lower than its base value. This is one way in which
the social aspect of the interaction can affect the task aspect. The
estimated rapport value can also be used to modulate the social
behaviour of the user simulator. For example, if the rapport value is
average and the agent had praised the user in the last turn, then the
user simulator might decide to engage in reciprocal appreciation to
increase the rapport even further. Section 4.5 describes the rapport
estimator for our case study in detail.
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3.3 User Dialog Manager
The Dialog Manager module is responsible for generating user task
strategy (task reasoner) and conversational strategy (social rea-
soner) depending upon the user model, past agent actions and
the estimated rapport (output of rapport estimator). For exam-
ple, if the agent makes a relevant recommendation and then re-
quests for feedback (agent task strategy: request(feedback)),
and if the estimated rapport is high, the user simulator might de-
cide to not only accept the recommendation (user task strategy:
inform(feedback=good)) but also praise the system for making a
relevant recommendation (user conversational strategy: PR). The
dialog manager can either be rule-based, data-driven, or a hybrid
of the two.

3.4 Reward Model
This module is responsible for providing a numerical reward to the
agent. This reward could be task-dependent, social, or a combina-
tion of the two, and is used by the RL agent as a learning (rein-
forcement) signal. For example, the user simulator might provide a
positive reward for a relevant recommendation, or negative reward
if the agent takes too long to make a recommendation. Section 4.7
describes the reward model for our case study.

4 CASE STUDY
In this section, we explain howwe trained a user simulator based on
the architecture described in the previous section using an existing
dataset. The goal of this user simulator is to simulate the behavior of
a conference attendee asking for recommendations about sessions
to attend and people to meet. First, we describe the context in
which the dataset used to train our simulator was collected, then
we discuss the annotations and analyses we performed on this
dataset, and finally, we explain how we used the annotated dataset
to train the different modules of our user simulator.

4.1 Dataset: Conference Personal Assistant
Socially Aware Robot Assistant (SARA) [20] was deployed as a
personal assistant in a large high profile conference in 2017 [21].
The conference lasted four days, and was filled with discussions,
lectures, workshops, and showcases. The agent was designed to play
the role of a matchmaker in order to help attendees get the most out
of the conference. Many attendees interacted with the agent, which
in turn, helped them fulfill their goals, whether it be networking, or
learning about new technologies, or even getting to know about the
best places to eat or party at during the conference. During every
interaction, SARA elicited interests and goals of the participants,
and recommended them relevant people to meet and sessions to
attend. After every recommendation, SARA requested for explicit
feedback regarding whether the recommendation matched user’s
interests or not. If the user liked a recommendation, SARA further
asked if the user was willing to accept a private message (on a
conference-specificmobile application) as a reminder for the session
or for introducing the user to the person recommended. A typical
interaction between users and the agent has been shown in table 3.
Our corpus contains data from 64 of these interactions and includes
both attendee’s and SARA’s video and speech transcription. This

accounts for over 5 hours of interaction (total time = 323.8 min,
mean session duration = 5.06 min, standard deviation = 1.06 min).

4.2 Dataset Annotation
Before training the different components of the user simulator, we
annotated each interaction in our dataset for rapport, conversa-
tional strategies and task performance. Human annotators quanti-
fied the level of rapport by rating 30-second thin slices [1] of the
interactions for rapport on a Likert Scale from 1 to 7 [40], with 1
being the lowest and 7 being the highest. Further, user utterances
were annotated for 5 conversational strategies: SD, PR, HE, VSN
and QESD. If an utterance didn’t contain any of these 5 strate-
gies, it was marked as NONE. Inter-rater agreement was achieved
between 4 annotators for annotation of rapport and all conver-
sational strategies (Krippendorff’s alpha, α > 0.7). Finally, task
performance for each interaction was annotated as a categorical
variable-length vector with the length of the vector equal to the
number of recommendations made during the interaction and each
element representing the outcome of the recommendation depend-
ing on user’s response to SARA’s explicit confirmation task strategy
requesting for feedback (request(feedback)): 0 for rejection and
1 for positive feedback followed by acceptance of SARA’s request
for sending a message on conference-specific mobile application
(request(send_msg)) ("Great recommendation. Could you also send
me a reminder?"). Rejection was further categorized into (a) rejec-
tion with ("Please recommend me someone from Asia, instead.") or
(b) without a specified reason ("No, I don’t like it."), and (c) positive
feedback ("That’s a great recommendation.") followed rejection of
SARA’s request for sending a message ("No, thank you. I’ll reach
out myself."). For each session, we used the annotated 30-second
thin slice rapport values to construct a cubic spline interpolation
as shown in figure 2 in order to learn rapport as a continuous
function of time. Further, from the text transcripts of the sessions,
we mined the time stamps when SARA asked for feedback on its
recommendations.
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Annotated Rapport

Figure 2: Spline interpolation based on annotated rapport

4.3 Data Analysis: Two Types of Users
We categorized users into two types depending upon the conversa-
tional goals they focused on accomplishing during their interaction
with SARA:
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Speaker Utterance Task Intention Conv. Strategy

SARA I am so glad you’re here. I am SARA, what’s your name? greeting() SD
User My name is X. greeting() SD
SARA I’m here in Y to be your personal assistant and help you to get the most out of the experience. So is this your first time at Y

or have you been here before?
introduce(), request(first_time) NONE

User I’ve been a number of times before so this is probably fifth or sixth time. inform(first_time=False) SD
SARA Wow! You must be a global rock star to be invited so many times. give_feedback() PR
User That’s very courteous of you. null() NONE
SARA If you wouldn’t mind sharing your goals for attending Y this year I can try to help you achieve them. request(primary_goal) PR
User Great, so I always like to meet other people learn about concepts that I don’t fully understand currently, like this idea of a

digital human. Is there an application of that as I’m the general counsel of a big company. Can we use that at our company.
inform(primary_goal=person) SD

SARA That’s really intriguing this is my favorite part, let’s see if we can find some interesting people to meet. request(person_reco) ASN, SD
SARA Just wait while I look this up. I think you’d enjoy meeting this person on the screen are details inform(info_person=Z) SD
User That’s a wonderful idea! Z is a client. inform(feedback=True) PR, SD
SARA Did I have a good match? request(feedback) NONE
User A very good match thank you for that! inform(feedback=True) PR
SARA So I can do one of two things: I can send a message to the attendee introducing you or I can give you the information and

then you can yourself get in touch. Would you like me to send a message?
request(send_msg) NONE

User With great pleasure, that would be wonderful if you did. inform(send_msg=True) PR
SARA I understand you are busy so I can let you go if you want but before I do you want me to take a quick selfie of us? request(selfie) NONE
User Please that would be wonderful. inform(selfie=True) NONE
SARA Okay one two three smile cool. take_selfie() NONE
SARA Well feel free to come back in the meantime enjoy the meeting, and it was nice working with you bye! bye() NONE
User Great, bye! bye() NONE

Table 3: A typical interaction between SARA and a user.

• Propositional (P-Type): If a user prefers accomplishing
propositional goals (receiving recommendations) over in-
terpersonal goals (building rapport with SARA).

• Interpersonal (I-Type): If interpersonal goals matter to a
user as much as (if not more than) propositional goals.

We used k-means clustering algorithm [18] (k = 2) where each
user was represented by its cumulative use of conversational strate-
gies in a 6-dimensional space with each dimension corresponding
to one of the 6 annotated conversational strategies employed by
users (table 1). We repeated the algorithm with 5 different random
seeds and assigned clusters based on the majority vote to mitigate
the impact of random initialization. The Silhouette Score [27] for
the final clustering was 0.32 (score for random cluster assignment
is 0). We were able to identify two distinct clusters with a clear
distinction in terms of their cumulative CS use (figure 3). The dif-
ference in average cumulative CS use was statistically significant
for the two clusters, as measured by one-way Multivariate Analysis
of Variance [3] (MANOVA) (Wilks’ Lambda = 0.24, F (6, 57) = 29.7,
p < 0.0001). Further, these differences were significant at p < 0.05
with large effect size (Cohen’s D) for all strategies, except for QESD
and VSN. The results for two-sided Welch’s t-test [34] (after Bon-
ferroni correction) were: SD: (t = 5.06,p = 0.00003,D = 1.48), PR:
(t = 3.49,p = 0.012,D = 1.16), HE: (t = 3.07,p = 0.026,D = 0.92)
and NONE: (t = 4.42,p = 0.00006,D = 1.03). While users from the
first cluster predominantly used SD and NONE, those from the sec-
ond cluster employed a greater variety of conversational strategies.
We hypothesize that the former cluster corresponds to P-type users
as they do not use the verbal behavior (interpersonal strategies)
commonly associated with building of rapport, and hence, do not
signal a social intention of pursuing interpersonal goals through
the conversation. The second cluster, analogously, corresponds to
I-type users. It should be noted that the difference in agent average
cumulative CS use between the two clusters was not statistically
significant (Wilks’ Lambda = 0.84, F (7, 56) = 1.58, p = 0.16), thus,
the difference in cumulative CS use between these two types of
users can be attributed to users’ conversational goals alone.
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Figure 3: Cumulative CS use for I-type and P-type users

4.4 User Model
We used the following features to model a unique user in the confer-
ence. These features are used by the rapport estimator, user dialog
manager (social reasoner and task reasoner) modules (as shown in
figure 1) to generate appropriate task and social strategies for the
simulated user. All these features are random variables, parameters
of whose distributions were learned from the data using maximum
likelihood estimation (MLE).

• Number of recommendations (Nr): The total number of
recommendations (between 1 and 6) requested by the user.
For a given total number of recommendations, how many
recommendations were for people to meet (Np ) and how
many were for sessions to attend (Ns ). Thus, Nr = Np + Ns .

• Time at hand: This feature is derived from Nr . We classify
users into three categories depending upon the amount of
time they have: a user is assumed to have less time (LT) if
1 ≤ Nr ≤ 2, average amount of time (AT) if 3 ≤ Nr ≤ 4 and
more time (MT) if 5 ≤ Nr ≤ 6. In our dataset, 40.6% users
had LT, 45.3% had AT and the remaining 14.1% had MT.

• Primary goal: This feature is also derived from Nr . If Np ≥
Ns , user’s primary goal is to meet people, and vice versa.
This feature is used by the rule-based agent to determine
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which type of recommendations to give first. In our dataset,
57.8% users had meeting people as their primary goal and the
remaining 42.2% wanted session recommendations primarily.

• Conversational Goal: I-type or P-type, as explained in the
previous section. The prior probabilities for a user being I-
type or P-type were learned from the data using MLE. In our
dataset, 64.1% of the users were P-Type and the remaining
35.9% were I-Type.

4.5 Rapport Estimator (RE)
We estimated rapport using a neural network (multi-layer percep-
tron) with a single hidden layer (with leaky Rectifier Linear Unit
(ReLU) activation [19]). In order to predict the rapport at any given
turn, Rn , input to the neural network comprised of binary represen-
tations of raw data upto two turns in the past: agent task strategy
(T a ), user and agent conversational strategies (Cu ,Ca ) and rapport
values (R). We performed extensive hyperparameter search across
a 3 × 3 grid to select the most optimal combination of features
(only CS, CS + rapport, CS + rapport + agent task strategy) and
window size (W) (1, 2, linear combination (LC)). For example, the
input for window size 2 and CS + rapport is the concatenation
of [Ca

n ;Ca
n−1], [C

u
n−1;C

u
n−2] and [Rn−1;Rn−2]. The input for linear

combination window for the same features is the concatenation
of α1Ca

n + α2C
a
n−1, and β1Cun−1 + β2C

u
n−2, γ1Rn−1 + γ2Rn−2, where

α = [α1,α2], β = [β1, β2] and γ = [γ1,γ2] are trainable parameters.
The best model for each of these 9 configurations was chosen based
on the accuracy on the validation set (10% of the full dataset) by
tuning for the optimal number of training epochs, hidden layer size
(8 or 16) and a grid search over the value of the slope of the leaky
ReLU activation, and then the best model out of these 9 different
models was selected for rapport estimation (table 5). The rapport
estimated at every turn in the dialog by the rapport estimator is
used by the dialog manager module, as explained next.

4.6 User Dialog Manager
4.6.1 Social Reasoner (SR). We used the same architecture as

that for the rapport estimator except that the output of the neural
network for social reasoner is 6-dimensional (number of user con-
versational strategies). We perform a hyperparameter search similar
to the one described for RE, except, we also tune for the threshold
used to convert the probability vector (output of the social reasoner
neural network) into a binary conversational strategy vector and
select the best model out of the 9 configurations (table 5) for final
evaluation.

4.6.2 Task Reasoner . We constructed the task reasoner based
on the Finite State Machine (FSM) used to construct the rule-based
version of SARA deployed in the conference. Task reasoner was
largely composed of handcrafted rules, apart from one stochastic
decision point: recommendation acceptance. The probability of
recommendation acceptance for different rapport levels for different
clusters (P-Type, I-Type, Overall) has been given in table 4.

4.7 Reward Model
The user simulator gives a positive numerical reward (5 points) to
the agent for every accepted recommendation. However, there are
per-turn penalties for dialog length which depend upon the time

Rapport level P-Type I-Type Overall

<3 0.64 0.60 0.63
3-4 0.72 0.56 0.67
4-5 0.70 0.57 0.65
>5 0.56 0.80 0.65

Table 4: Recommendation Acceptance Model

the user has and the conversational goal of the user. The relative
values of the penalties were selected based on the assumption that
P-type users and users with less time at their disposal prefer shorter
interactions. If the user has less time, it assigns only a small negative
penalty (-0.25) if it is I -type, i.e. focuses on both interpersonal and
propositional goals, but a large negative penalty (-1) if it is P-type.
If the user has average amount of time, it assigns (a small) negative
penalty only if it is P-type. Finally, if the user has more than average
amount of time, it doesn’t penalize for the length of the interaction
at all.

RE SR

I-Type (CS + rapport, LC) (CS + rapport + agent TS, LC)
P-Type (CS + rapport, 1) (CS + rapport, LC)
Overall (CS + rapport, LC) (CS + rapport, 1)

Table 5: Best models (feature, window) for RE and SR

5 RESULTS AND ANALYSIS
We consider two variants of the user simulator model, as described
below, in order to validate our approach, and support our initial
claim that incorporation of user conversational goals leads to more
accurate user simulation.

• Unimodal: In this model, we do not cluster users based
on their conversational strategy use, i.e., we assume that all
users pursue similar goals in their interactions with SARA.
Hence, we assume that the dataset has a single mode and
therefore, interactions can be considered to be identically
distributed.

• Bimodal: In this model, we cluster users based on their
conversational strategy use, i.e., we assume that there are
predominantly two types of users: P-type and I-type. In other
words, we assume that the dataset has two distinctmodes and
hence, interactions can be considered identically distributed
only conditioned on the type of the user.

For unimodal user simulator, we use the entire dataset to train
the rapport estimator, social reasoner and the recommendation ac-
ceptance model, whereas, for bimodal user simulator, we segregate
the dataset into two clusters (as described in section 4.3) and pool
the data belonging to each cluster to train each of the three mod-
ules. We hypothesize that the bimodal user simulator will be able
to model the behaviour of real users more closely. Note that while
we had provided evidence towards existence of two distinct user
types in our corpus previously, our hypothesis here is that using
this information is also crucial for construction of an accurate so-
cial user simulator. Next, we discuss the performance of individual
modules and of the user simulator as a whole and provide evidence
towards the need for bimodal modeling.
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5.1 Intrinsic Evaluation
As described previously, we select best models for RE and SR based
on the accuracy on the validation set through an extensive hyper-
parameter search. Next, we evaluate their performance on two test
sets: one containing 10% data for I-type users only and the other
containing 10% data for P-type users only. It is evident from table
6 that RE is more accurate for the unimodal model on both the
test sets, as measured in terms of Mean Squared Error (MSE). This
indicates that greater training data for unimodal model helps the
rapport estimation process, and that users’ conversational goals
do not have a significant bearing on rapport estimation. However,
despite being trained on only 30% (I-Type) and 70% (P-Type) data,
SR for bimodal model is either comparable or better than the uni-
modal model, as measured in terms of F1 score for SD and NONE
conversational strategies. The F1 scores for all other conversational
strategies are 0 due to extreme sparsity in comparison to SD and
NONE. Further, SD only makes for 11.1% of all the predictions made
by the unimodal model (rest all are NONE), as compared to 19.4%
for bimodal model. This is further from the ground truth (25.6%)
and indicates that the unimodal model severely underestimates
other conversational strategies in favour of the NONE conversa-
tional strategy, which is the majority class. Note that this is de-
spite resampling minority classes, and indicates a critical failure
point of the unimodal model, especially for I-Type users. For ex-
ample, in response to agent’s (T a = introduce(), Ca = NONE),
the bimodal model with P-Type user outputs Cu = SD, while the
unimodal model outputs Cu = NONE. Similarly, in response to
agent’s (T a = glad(), Ca = NONE) (indicating that the agent is
glad at receiving positive feedback), the bimodal model with I-Type
user outputs Cu = (SD, PR), while the unimodal model outputs
Cu = NONE.

5.2 Extrinsic Evaluation
We construct unimodal and bimodal user simulators by integrating
the trained unimodal RE (since it is more accurate than bimodal
RE) with unimodal or bimodal SR and acceptance models (section
4.6.2) and evaluate them using the following metrics:

• Kullback-Leibler Distance (DKL):Wemeasure the KL dis-
tance between distributions of conversational strategies gen-
erated by the user simulator and real users. KL distance
between two distributions P and Q is defined as the aver-
age of the KL divergences, i.e.,DKL(P ,Q) = d (P | |Q )+d (Q | |P )

2 ,
where d(P | |Q) is the KL divergence between P and Q .

• Cramér–von Mises Divergence (DCV): We measure the
Cramér–von Mises divergence [36] between the real and
simulated empirical distribution functions of rapport values
at the time of agent’s request(feedback) task strategy.

For both of the metrics above, the lower the value, the more
realistic is the user simulator. In order to calculate these metrics,
we also learnt a social reasoner for the agent using the same ar-
chitecture as that for user SR. It is apparent from table 7 that
bimodal model performs much better as compared to unimodal
model both in terms of DKL and DCV . The differences in means
of both the metrics are significant using two-sided Welch’s t-test
(DKL : (t = 433.2,p < 0.0001), DCV : (t = 626.1,p < 0.0001)). This

provides additional evidence towards the importance of bimodal
modeling for construction of a more realistic social user simulator.

Model Type Rapport Estimator Social Reasoner

MSE SD NONE

P-Type Unimodal 0.36 0.32 0.84
Bimodal 0.41 0.32 0.85

I-Type Unimodal 0.24 0.15 0.67
Bimodal 0.76 0.40 0.65

Table 6: Test set accuracy for various models

Model Type DKL DCV

Unimodal 0.246 ± 0.002 0.514 ± 0.001

Bimodal 0.109 ± 0.001 0.316 ± 0.002

Table 7: User Simulator performance

6 CONCLUSION AND DISCUSSION
In this paper, we proposed a novel architecture for a social user
simulator that can be used to train RL-based socially-aware conver-
sational agents. The proposed user simulator utilizes social cues
such as user and system conversational strategies and user conver-
sational goals to estimate the level of rapport during the interaction
and to generate appropriate task and social behaviours. The ar-
chitecture is general enough to be of use in different task settings.
Further, we developed and evaluated a user simulator using the
proposed architecture in a personal assistant domain.

Through our analyses we discovered that the different users of a
conversational agent can be divided into two salient types depend-
ing upon their conversational goal (propositional vs interpersonal).
This conversational goal (and hence, the user type) can be inferred
from the conversational strategies employed by a given user during
an interaction. This result should encourage researchers to pay
closer attention to conversational strategies in discourse analysis.
Further, we posit that users focused on propositional goals (P-Type)
prefer more efficient interactions as compared to those focused on
interpersonal (I-Type) goals. Thus, it is essential for a virtual agent
to identify users’ conversational strategies in order to infer their
conversational goal and then adapt its task and social behaviour in
order to maximize user satisfaction. Thus, there is a need to endow
virtual agents with the ability to detect and generate appropriate
conversational strategies in real time.

There are certain limitations of our work that we would like to
address in the future. We did not account for potential errors due to
bad speech recognition (ASR), or natural language understanding
(NLU) in our modeling in order to model the dataset better, which
was collected using a semi-autonomous setup and hence resulted
in a few NLU or ASR errors. However, it would be important to
incorporate these noise models in the user simulator in order to
train robust RL-based conversational agents. Moreover, our user
simulator only generates verbal social behaviour (conversational
strategies) and doesn’t generate other non-verbal (multimodal) be-
haviour (such as eye gaze, smile, etc.) which are important for
building rapport. In order to accomplish this, we require accurate
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models for simultaneous generation of verbal and non-verbal social
behaviour (NVB) that allow for NVB to cut across turns. This con-
stitutes an important direction for future research. In this work, we
also assumed that the conversational goal of the user remains fixed
during the interaction, which might suffice for shorter interactions,
but as a next step, it would be interesting to study and incorpo-
rate evolution of conversational goals during longer or multiple
interactions for the purpose of developing dynamic social user sim-
ulators. We observed in our dataset that there were differences in
relationship between rapport and task performance across the two
clusters of users, however, they were not statistically significant.
We believe that this aspect needs to be explored further through
a careful experimental design and deserves more attention from
the research community. Finally, we would like to use our user
simulator to train an RL agent and test it with real users to further
validate the proposed architecture.
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