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Abstract

Semi-structured interviews are widely
used in medical settings to gather informa-
tion from individuals about psychological
disorders, such as depression or anxiety.
These interviews typically consist of a se-
ries of question and response pairs, which
we refer to as adjacency pairs. We pro-
pose a computational model, the Multi-
modal HCRF, that considers the common-
alities among adjacency pairs and infor-
mation from multiple modalities to infer
the psychological states of the intervie-
wees. We collect data and perform ex-
periments on a human to virtual human
interaction data set. Our multimodal ap-
proach gives a significant advantage over
conventional holistic approaches which ig-
nore the adjacency pair context in predict-
ing depression from semi-structured inter-
views.

1 Introduction

Recent advances in the fields of verbal and nonver-
bal behavior analysis are revolutionizing our abil-
ity to analyze and understand people’s behavior.
One promising application is the automatic analy-
sis of nonverbal behaviors associated with psycho-
logical disorder. Extensive research in behavioral
sciences has demonstrated a link between specific
psychological disorders, such as depression, and
patterns of verbal and nonverbal behavior (Ell-
gring, 1989). Recognizing these verbal and non-
verbal indicators, however, requires expert judge-
ments from trained clinicians. The factors un-
derlying these judgements are not easily quantifi-
able (Ellgring, 1989). Automatic detection of ver-
bal and nonverbal indicators can assist clinicians
by supporting their interview processes and pro-
viding more systematic, quantified measurements.
Moreover, fully-automated techniques can serve
as a pre-screening instrument for patients, com-

plementing the self-reported questionnaires which
are currently used for this purpose.

Psychological assessment interviews consist of
a series of “question” and “response” pairs, which
are consecutive utterances that we refer to as
adjacency pairs (Schegloff, 2007). The poten-
tial “response” doesn’t have to be a direct an-
swer, but could be a counter-question or other
form of response triggered by the “question”, as
long as it satisfies Grice’s conversational maxim
of relevance (Grice, 1975). Different adjacency
pairs serve different purposes in triggering sub-
ject responses, and a model that considers con-
text could better predict psychological disorders.
We propose a computational approach that lever-
ages the advantage of verbal and nonverbal behav-
iors extracted at the adjacency pair level to support
a more contextualized analysis, unlike previous
approaches which ignored context (Cohn et al.,
2009), or only consider context in single feature
analysis (DeVault et al., 2013).

Based on Hidden Conditional Random Fields
(HCRFs) (Quattoni et al., 2004), we propose a
new computational model, the Multimodal HCRF.
HCRFs allow us to learn verbal and nonverbal
commonalities among adjacency pairs automati-
cally. For example, one specific commonality is
that depressed people have a lower speech rate
compared to non-depressed people in their re-
sponses to a large set of probing questions (see
section 8.4 for details). In order to assess the effec-
tiveness of incorporating adjacency pair into our
analysis, we performed experiments on a corpus of
130 human to virtual human interviews, where the
question was always asked by the virtual human
interviewer, and the response was given by the
real human. Our analysis relies on a model which
brings together behaviors from multiple modali-
ties: visual, acoustic and conversational and re-
sults showed a significant improvement for our
multimodal computational model over previous
models at predicting depression.

We first review previous work and our hypothe-



ses before we describe our dyadic interaction data
set. After that we introduce automatically ex-
tracted multimodal features that capture verbal
and nonverbal behaviors. Next, we present our
computational model and experiments to validate
it. Finally, we further analyze the results from our
experiments.

2 Related Work

Many previous studies have examined the links
between nonverbal behaviors and clinical condi-
tions (Ellgring, 1989; Cohn et al., 2009). Lit-
tle progress has been made towards identifying
any clear links between patient disorders and ex-
pressed behaviors. This is due to the difficulties
of manually annotating gestures and facial expres-
sions, inconsistent measurements of nonverbal be-
haviors across studies and differences in social
contexts of the interview processes between stud-
ies.

There is a general consensus regarding the re-
lationship between certain clinical conditions (es-
pecially depression and social anxiety) and associ-
ated verbal and nonverbal cues. Emotional expres-
sivity, such as the frequency or duration of smiles,
is diagnostic of psychological disorders. For ex-
ample, depressed patients frequently display flat-
tened or negative effects, including less emotional
expressivity (Perez and Riggio, 2003; Bylsma
et al., 2008), fewer mouth movements (Fairbanks
et al., 1982; Schelde, 1998), more frowns (Fair-
banks et al., 1982; Perez and Riggio, 2003) and
fewer gestures (Hall et al., 1995; Perez and Rig-
gio, 2003). Some findings suggest that the quan-
tity of expressions may not be as important as their
dynamics. For example, depressed patients may
frequently smile, but these smiles are perceived as
less genuine and often shorter in duration (Kirsch
and Brunnhuber, 2007). Social anxiety and PTSD
share some features with depression, such as a
tendency for heightened emotional sensitivity and
more energetic responses. Such responses can in-
clude startlement and a greater tendency to display
anger (Kirsch and Brunnhuber, 2007) or shame
(Menke, 2011). Cohn and colleagues have iden-
tified increased speaker-switch durations as indi-
cators of depression, and have explored the use of
these features for classification (Cohn et al., 2009).
Our current research builds on these findings as a
step to overcome the difficulty of manually anno-
tating human behavior.

Scherer et al. (2013b) explore the correlation
between automatically quantified acoustic and vi-

sual features with psychological disorders. Stra-
tou et al. (2013) find that the subject’s gender
plays an important role in automatic assessment
of psychological conditions when analyzing auto-
matically extracted visual features. DeVault et al.
(2013) investigate the correlation between conver-
sation features and psychological disorders, but
don’t take visual features into consideration. Cohn
et al. (2009) use both facial expression and vocal
prosody in identifying depression, however, they
do not include more features which are predic-
tive of depression. In summary, there is a lack
of models that combine comprehensive conversa-
tional, visual and acoustic features related to de-
pression. Also, the prediction methods used in
previous works do not take the contextual infor-
mation of the interview into account.

We include contextual information by model-
ing nonverbal behavior at the adjacency pair level.
We apply HCRFs for classification, as opposed to
Naive Bayes used in DeVault et al. (2013) and
Stratou et al. (2013) because HCRFs model time
contingency. HCRFs have been successfully used
to tackled problems in computational vision and
speech. For instance, Quattoni et al. (2004) ap-
plied HCRFs to model spatial dependencies for
object recognition in unsegmented cluttered im-
ages.

3 Research Hypotheses

Interviews typically consist of a series of question
and response pairs which we refer to as adjacency
pairs. We present the two consecutive utterances
as a tuple (qi, ri), where q is the “question” and r
is the “response”.

For each adjacency pair, subjects exhibit differ-
ent verbal and nonverbal behaviors, for example, a
different speech rate or facial expression. We hy-
pothesize that:

1. We can better predict depression with a com-
putational model that takes advantage of con-
text by considering features quantified at the
adjacency pair level rather than models us-
ing features extracted from the whole inter-
action. For example, we consider the speech
rate in the response of the subjects in differ-
ent adjacency pairs as opposed to the speech
rate over the whole interaction in our model.
The change of nonverbal behaviors exhibited
in human responses to different stimuli (i.e.
positive questions versus negative questions)
are known to be significantly different be-
tween groups with and without psychological



disorders (Bylsma et al., 2008).

2. Adjacency pairs which serve the same prob-
ing purpose share commonalities in human
verbal and nonverbal responses. By allowing
our model to learn these commonalities we
can improve prediction accuracy. For exam-
ple, one commonality could be that for a set
of adjacency pairs which concern a client’s
personal experience, people with psycholog-
ical disorders have a longer latency in speech
onset time to respond to the questions.

3. A comprehensive set of features from multi-
ple modalities improves computational per-
formance in predicting depression compared
to a single or bi-modal approach. Previ-
ous works (Cohn et al., 2009; Scherer et al.,
2013b; Stratou et al., 2013) combine differ-
ent multimodal features, but none of these
approaches make use of all three modalities
(conversational, visual and acoustic). Ac-
cording to our previous research, multimodal
features also improve friendship prediction
(Yu et al., 2013). Although the tasks are
different, we believe that leveraging multiple
information channels can benefit depression
prediction.

4 Distress Assessment Interview Corpus
(DAIC)

We use a data set that has 130 semi-structured in-
terviews in a Wizard-of-Oz paradigm between a
human and the virtual character Ellie, depicted in
Figure 1. Drawing on observations of interviewer
behavior in the face-to-face dialogues, Ellie was
designed to serve as an interviewer who is also
a good listener, providing empathetic responses,
back channels and continuation prompts to elicit
extended replies to specific questions. The virtual
human builds rapport with the participant at the
beginning of the interaction with a series of casual
questions about Los Angeles. After that, the con-
versation transitions towards intimate questions,
like, “Do you consider yourself more shy or out-
going?”. After the intimate phase, Ellie asks ques-
tions directly related to previous experiences of
psychological disorders, such as, “Have you been
diagnosed with depression before?”. A series of
positive questions, for example, “How would your
best friend describe you?” are designed to leave
the participant in a positive mood. Participants
for the study were recruited via Craigslist and all
applicants who met the requirements (i.e. age

Figure 1: Ellie, the virtual human

greater than 18, and adequate eyesight) were ac-
cepted. The mean age of the 130 participants in
our data set was 38.41 years, with 69 males and
61 females. For a measure of psychological dis-
orders, the PHQ-9 provides guidelines on how to
assess the participants’ conditions based on their
responses to a questionnaire. Among the 130 par-
ticipants, according to the PHQ-9, 30 participants
were considered to have moderate depression or
above (Kroenke and Spitzer, 2002) by having a cu-
mulative score of ten or above. We consider them
depression-positive in this study.

5 Automatically Extracted Multimodal
Features

In this section, we briefly describe the features
used in our experiments and the literature that mo-
tivates them. We focus on three types of features:
conversational (Section 5.1), visual (Section 5.2)
and acoustic (Section 5.3). All the features are ex-
tracted from the “response” part of an adjacency
pair, as the “question” part of an adjacency pair is
spoken by Ellie and is identical for all the subjects.
We include only automatically derivable features
in our analysis for the purpose of reducing manual
annotation. In total, we use 16 features: 5 conver-
sational, 3 visual and 8 acoustic.

5.1 Conversational Features
The system’s speech segments, including starting
and ending time stamps and verbatim transcripts
of system utterances, were saved from the system
log files. Motivated by DeVault et al. (2013), we
selected the following features:

• Speaking Rate and Onset Time Slowed



speech and increased onset time were ob-
served in previous clinical interviews of de-
pressed individuals (Hall et al., 1995). We
quantify the speaking rate by counting the
number of words spoken per minute, and the
speech onset time as the time delay before the
user responds to Ellie’s question. Here we
use the manual transcription of the interview.
However, it is possible for the output of the
automatic speech recognition (ASR) system
to be used as an approximation of the tran-
scription, thus making the speech rate and on-
set time automatically obtainable.

• Number and Average Length of User Seg-
ments The utterances are automatically seg-
mented by identifying long pauses and the
average length of the user segments is quan-
tified in seconds.

• Filled Pause Rate We count the number of
times any of the tokens uh, um, uhh, umm,
mm, or mmm appears in each speech seg-
ment. To account for the varying length of
speech segments, we define the filled pause
rate as the number of those tokens divided by
the duration of the corresponding segment.

5.2 Visual Features

We selected three visual features based on work in
Stratou et al. (2013):

• Expression Variability Based on a collec-
tion of clinical observations summarized in
Ellgring (1989), the homogeneity of an af-
fective level and total facial activity are con-
sidered good indicators of psychological dis-
orders. Specifically, reduced facial behav-
ior, or lack of emotional variability, has been
reported as an indicator of depression. Our
automatic feature extraction system includes
the Computer Expression Recognition Tool-
box (CERT) (Littlewort et al., 2011), which
measures 8 basic expressions: Anger, Dis-
gust, Contempt, Fear, Joy, Surprise, Sadness
and Neutral. We measure emotional variabil-
ity by considering the variances of all these
expressions.

• Neutral Expression The frequency of the de-
tection by CERT of a “Neutral” expression
is a good measure of emotional “flatness”,
which mentioned in Ellgring (1989) as well.

• Head Rotation Clinical observations suggest
reduced motor variability or motor retarda-
tion among patients suffering from depres-
sion (Ellgring, 1989). Hence, as an aspect
of motor variability we look at head rotation
variability as an indicator of psychological
disorders. Our system for automatic analy-
sis provides 3D head position and orientation
based on the GAVAM head tracker (Morency
et al., 2008) and CLM-Z face tracker (Baltru-
saitis et al., 2012). Measuring the head rota-
tion in all three directions (yaw, tilt and roll)
allows us to calculate the head rotation.

5.3 Acoustic Features
Motivated by Scherer et al. (2013a) and Cohn
et al. (2009), we extracted the following acoustic
features with a sample rate of 100 Hz, using the
lapel microphone recordings:

• Energy in dB The energy of each speech
frame is calculated on 32 ms windows with a
shift of 10 ms (i.e. 100Hz sample rate). Each
speech window is filtered with a hamming
window and the energy is calculated and con-
verted to the dB-scale.

• Fundamental Frequency (f0) In Drugman
and Abeer (2011), a method for f0 tracking
based on residual harmonics, which is es-
pecially suitable in noisy conditions, is in-
troduced. The residual signal r(t) is calcu-
lated from the speech signal s(t) for each
frame using inverse filtering. This process re-
duces the influence of noise and vocal tract
resonances. For each r(t), the amplitude
spectrum is computed, showing peaks for the
harmonics of f0, the fundamental frequency.
These peaks form the basis for robust f0 esti-
mation.

• Spectral Stationarity (ss) To characterize
the range of the prosodic inventory used over
utterances, we make use of the so-called
spectral stationarity measure. This measure-
ment was used in Talkin (1995) as a way
of modulating the transition cost used in the
dynamic programming method used for f0
tracking. Spectral stationarity, ss, is mea-
sured using the Itakura distortion measure
(Itakura, 1975) between the current current
and previous frame. We use a relatively long
frame length of 60 ms (with a shift of 10 ms;
sampling rate 100Hz) and frames are win-
dowed with a Hamming window function be-



fore measuring ss.

• Normalized Amplitude Quotient (NAQ)
This feature is derived from the glottal source
signal estimated by iterative adaptive inverse
filtering (Alku et al., 1992). The output is
the differentiated glottal flow. The NAQ is
the ratio between the negative amplitude of
the main excitation in the differentiated glot-
tal flow pulse and the peak amplitude of the
glottal flow pulse normalized by the length of
the glottal pulse period (Alku et al., 2002).

• Quasi-Open Quotient (QOQ) and Open-
Quotient Neural Net (OQNN ): The QOQ
is also derived from amplitude measurements
of the glottal flow pulse (Alku et al., 2002).
The quasi-open period is measured by detect-
ing the peak in the glottal flow and finding the
time points before and after this point that de-
scend below 50% of the peak amplitude. The
duration between these two time-points is di-
vided by the local glottal period to get the
QOQ parameter. As a novel alternative of the
QOQ, we extract OQNN , a parameter esti-
mating the open quotient using standard Mel
frequency cepstral coefficients and a trained
neural network for open quotient approxima-
tion (Kane et al., 2013).

• Harmonic Amplitude Difference The dif-
ference in amplitude levels (in dB) between
the first two harmonics of the narrow band
voice source spectrum, which is an alter-
native rough estimate of the open quotient
(Henrich et al., 2001).

• Peak Slope This voice quality parameter
is based on features derived following a
wavelet-based decomposition of the speech
signal (Kane and Gobl, 2011). The parame-
ter, named peak, is designed to identify glot-
tal closure instances from glottal pulses with
different closure characteristics.

6 The Multimodal HCRF Modal

A semi-structured interview changes according to
the behaviors of the participants and is composed
of a series of adjacency pairs. From a model-
ing perspective, semi-structured interviews have
three main components: (1) an overall goal, which
is specific to each interview (e.g., assessing de-
pression or PTSD), (2) a conversational struc-
ture where some adjacency pairs share a com-

mon purpose and (3) a variation in human behav-
ior during different adjacency pairs or sets of ad-
jacency pairs. We propose a computational ap-
proach which explicitly models these three main
components and addresses all the research hy-
potheses discussed in Section 3. Our approach
is based on a Hidden Conditional Random Field
(HCRF) (Quattoni et al., 2007) which is a prob-
abilistic energy model that learns hidden com-
monalities automatically from a series of observa-
tions from adjacency pairs and their corresponding
mappings to depression assessments. Each hidden
state groups together adjacency pairs with simi-
lar function for the purpose of differentiating de-
pressed people from non-depressed. We propose
to adapt HCRF to automatically predict depres-
sion over the semi-structured interviews between
humans and virtual humans.

Figure 2 depicts a graphical representation of
our model. We wish to learn a mapping between

Figure 2: Multimodal HCRF

multimodal features x={x1, x2, ..., xn}, defined in
Section 4 and extracted at the adjacency pair level,
and the class label y ∈ Y, which is either depressed
or not. Our model is defined as

P (y|x, θ) =
∑

h e
ψ(y,h,x;θ)

Z(x, y)

where h = {h1, h2, ..., hm} are hidden states rep-
resenting the commonalities between adjacency
pairs. H is the set of hidden commonalities. The
constant Z(x,y) is a partition function that serves
as a normalization factor. The most important
parts of the model are the potential functions,
ψ(y,h, x; θ), parameterized by [ θx θy θh]. We vi-
sualize these parameters in Figure 2 and describe
them below:

1. The parameter θx models the relationship
between multimodal features xj and hidden
states (commonalities) hj . By analyzing the



amplitude of each of the weights in θx, it is
possible to learn the relative importance of
each feature for each hidden state. Adjacency
pairs that map to the same hidden state form
a group which share commonalities.

2. The parameter θy models the relationship be-
tween the hidden states hj and the label y. By
analyzing the weights of θy, it is possible to
see which groups of adjacency pairs are im-
portant to predict depression.

3. The parameter θh represents the links be-
tween hidden states. It models the tempo-
ral dynamics in the hidden states (common-
alities) of adjacency pairs.

In our experiments we used a Quasi-Newton op-
timization technique implemented in HCRF tool-
box 1.

7 Experiments

We designed our experiments to evaluate our three
hypotheses: (1) the effect of modeling semi-
structured interviews at the adjacency pair level,
(2) the importance of explicitly learning the com-
monalities between adjacency pairs, and (3) the
importance of multimodal features. In this sec-
tion, we introduce our baseline models and the
methodology of our experiments. Furthermore,
we compare our model against various baseline
approaches.

7.1 Baseline Models
We select two baseline models: (i) a Support Vec-
tor Machine (SVM) (Cortes and Vapnik, 1995)
with a linear kernel, which is widely used as a
discriminative model, (ii) a Maximum Entropy
Model, which is an energy model similar to the
HCRF but without the hidden states assumption.
We used MaxEnt models instead of CRF models
(Lafferty et al., 2001), as CRFs are designed to
predict a sequence of labels while our task con-
tains only one label for the entire interaction.

Support Vector Machine (SVM)
We use the implementation of SVM from the lib-
svm package (Fan et al., 2008). The parameter that
controls the scale of the soft margin was obtained
automatically using cross validation. We train two
SVM models: one using the averaged features ex-
tracted over the entire interview(SVM Holistic),
and the second using features from each adjacency
pair stacked into a large feature vector (SVM AP).

1http://sourceforge.net/projects/hcrf/

Maximum Entropy Model (MaxEnt)
MaxEnt is implemented based on Ratnaparkhi
(1996). We trained two models: MaxEnt Holis-
tic, MaxEnt AP, following the same technique de-
scribed for SVM.

7.2 Experiment Settings
All models in this paper were evaluated with the
same cross validation and training-testing splits.
We use a 4-fold testing and 3-fold validation with
retraining. Validation of all model hyperparam-
eters (regularization terms and number of hidden
states) was performed automatically. For HCRF,
we perform grid search over the regularization
constant, 0, 1, 10, 100, 1000, and the number of
hidden states, 2, 3, 4, 5. We found the best hyper-
parameter setting to be 1 for the regularizer and
4 for the number of hidden states. The reported
model parameters are calculated using all avail-
able data, with 5-fold cross validation.

We compute precision by taking the number of
correctly predicted depressed subjects divided by
the total number of subjects that are predicted as
depressed. Likewise, recall is computed as the
number of correctly predicted depressed subjects
divided by the actual number of depressed sub-
jects. The F1 measure is the harmonic mean of the
precision and recall in multimodal analysis (Stra-
tou et al., 2013), which is a standard measure to
capture the joint performance of precision and re-
call.

Z-score normalization is performed for each
conversation to scale all the features into the same
range, making the learned weights comparable.
All multimodal features defined in Section 4 are
concatenated into one feature vector per observa-
tion, in an early fusion fashion. The distribution
of depressed and non-depressed subjects is skewed
(30 depressed versus 100 non-depressed).

8 Results and Discussion

In this section, we present the results of our
three experiments, looking at the effects of ad-
jacency pairs, hidden commonalties and multiple
osmolalities of the features. We further analyze
the weights learned from our multimodal HCRF
model to draw knowledge and implications from
our interview corpus.

8.1 Effect of Using Adjacency Pairs
In order to show the benefits of modeling features
at adjacency pair level, we compared the holistic
approaches (SVM Holistic and MaxEnt Holistic)



Model F1 Precision Recall
HCRF 0.664 0.767 0.585
SVM Holistic 0.417 0.500 0.357
SVM AP 0.449 0.533 0.381
MaxEnt Holistic 0.523 0.567 0.486
MaxEnt AP 0.603 0.733 0.512

Table 1: Comparison of our approach with base-
line models. ‘Holistic’ stands for models with fea-
tures extracted over the whole interaction, ‘AP’
stands for models with features extracted at adja-
cency pair level.

with the adjacency pair approaches (SVM AP and
MaxEnt AP) by performing pairwise T-tests on a
4 fold testing set. By F1 measure, the adjacency
pair approaches are significantly better than holis-
tic approach for both SVM and MaxEnt (p < .05
respectively). Detailed numbers are shown in Ta-
ble 1. This shows that using features extracted at
each adjacency pair level is better than extracting
features over the whole interaction in the task of
depression prediction as we have hypothesized in
H1 of Section 3. Extracting features at the entire
interview level ignores discriminative information
within each adjacency pair as well as the depen-
dence between consecutive pairs.

8.2 Effect of Learning Commonalities among
Adjacency Pairs

Multimodal HCRF automatically learns the com-
monalities among different adjacency pairs by as-
signing them to the same hidden state. Each hid-
den states is a similar set of questions designed
to serve similar purpose. We see from Table 1
that our approach outperforms all the baselines.
Four paired T-tests are performed on the F1 mea-
sures, between the HCRF and each baseline model
(SVM Holistic, SVM AP, MaxEnt Holistic and
MaxEnt AP) on a 4-fold testing set and found
statistical significance in all the four pairs with
p < .05. These results suggest the advantage of
learning commonalities among adjacency pairs, as
we have hypothesized in H2 of Section 3.

8.3 Effect of Using Features Extracted from
Three modalities

Figure 3 shows that the use of features from three
modalities statistically outperforms (paired T-test
with p < .05) all other possible combination of
modalities using HCRFs in terms of the F1 mea-
sure, as we have hypothesized in H3 of Section 3.
These results confirm the advantage of combining

features from three modalities in the depression
prediction task suggested in our third hypothesis.
Yu et al. (2013) reported similar trends in friend-
ship prediction.

Figure 3: Comparison of our comprehensive mul-
timodal approach against other set of features us-
ing HCRF, ‘C’ stands for conversational features,
‘V’ stands for visual features and ‘A’ stands for
acoustic features, ‘+’ stands for combination

8.4 Analysis of the Learned Multimodal
HCRF

Figure 4 illustrates the learned Multimodal HCRF
model with its optimized parameters. The learned
model has four hidden states, which means that the
adjacency pairs are clustered into four groups. By
analyzing θy, we observe that depressed individu-
als are more tightly associated with the verbal and
nonverbal behaviors manifested in the first and the
last hidden states, while non-depressed individu-
als are more tightly associated with the second and
third hidden states. We obtain the set of the most
predictive features for each hidden state by select-
ing features with associated weights higher than
0.15. For example, in hidden state 1, “speech onset
time”, “neutral expression”, “energy in dB” and
“peak slope” stand out as the top ranked features.
We show the top ranked features of each hidden
state in Figure 4.

By performing inference on the learned model
parameters, we can recover a list of the adjacency
pairs most strongly associated with each hidden
state for each participant. Then we hold a ma-
jority vote for each adjacency pair with all 130
participants to determine its most strongly asso-
ciated hidden state overall. The first hidden state
was most strongly associated with the responses
to the questions “How would your best friend de-
scribe you?”, “Tell me about the last time you
felt really happy?”, and “I’m sure you can tell by
my shoes. I’m not much of a world explorer. Do



Figure 4: the Multimodal HCRF model for depres-
sion prediction. Hidden state 1 and 4 are more cor-
related with depressed people, while hidden state
2 and 3 have relatively larger influence on non-
depressed people. We also listed features with
weights higher than 0.15.

you travel a lot?”. It is interesting to see that all
of these questions are designed to build up inti-
macy between clinicians and patients. We found
that “speech onset time” is negatively correlated
with depression for all three adjacency pairs men-
tioned above. This is consistent with the findings
in Cohn et al. (2009), where increased speaker-
switch duration in conversation is found in the de-
pressed group. However, there are other features
that are only salient for one adjacency pair but
not for the others. For instance, “peak slope” and
“energy in dB” are only salient for the first ques-
tion’s response, but not for the others. The “peak
slope” feature has been identified as a good indi-
cator of depression, and as Scherer et al. (2013b)
suggests, depressed patients tend to have tighter
glottal flow than healthy individuals. Lower “en-
ergy in dB”, meaning quieter speech, is correlated
with depression. In addition to the above observa-
tions, we find that the “neutral expression” feature
is not salient. This is despite the feature being the
second most heavily weighted feature associated
with the first hidden state. We believe that clus-
tering adjacency pairs together through the hidden
states provides more predictive power than using
the features themselves. A previous study also
found that “neutral expression” is a good indicator
of depression through a holistic analysis (Stratou
et al., 2013).

For the fourth hidden state of our model, the ad-
jacency pairs with questions “What are things you
really like about LA?”, “How are you doing?” ,
“Where are you originally from?”, and “Some-
times when I’m feeling tense, I turn on the fish tank

screen saver. Hey I know it’s not Hawaii but it’s
the best I’ve got. What do you do to relax?” ap-
pear to be the most relevant according to majority
vote. All of these questions are from the rapport
building phase of the interview. We found that for
all four questions, depressed participants respond
with shorter speech length. This finding is corre-
lated with a previous report that depressed people
are less expressive in the rapport-building phase
of the conversation (Bylsma et al., 2008). In ad-
dition to shorter “speech length”, lower “speech
rate” is also a salient indicator of depression in re-
sponse to the first three adjacency pairs we men-
tioned above, which correlates with findings of a
previous study (Teasdale et al., 1980).

To sum up, our analysis suggests that clinicians
should focus on different verbal and nonverbal be-
haviors in response to different questions. For ex-
ample, “speech onset time” is very crucial for eval-
uating responses triggered by intimate questions,
while “speech length” is very important for rap-
port building questions.

9 Conclusion

We introduced the Multimodal HCRF, a compu-
tational model which explicitly considers the con-
text and the commonalities among the adjacency
pairs in an interview. By combining conversa-
tional, visual and acoustic features, our model out-
performs the use of any other combination of the
modalities. The saliency of the verbal and nonver-
bal features extracted from the adjacency pairs is
related to the content and purpose of the probing
questions. For future work, we plan to incorporate
linguistic cues, such as sentiment analysis, syntac-
tic structure and lexical features into our computa-
tional model.
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